Gli Integrali - Appunti di Matematica gratis Studenti.it

Gli integrali: Descrizione e spiegazioni degli integrali (3 pagine formato doc)

VOTO: 3 Appunto inviato da valegla86

Calcoliamo integrali solo relativamente a un D costituito da un intervallo, una semiretta oppure tutto R (senza buchi). Il simbolo: f (x) dx rappresenta l’integrale indefinito di f (x) ossia l’insieme di tutte le funzioni la cui derivata è f (x) che si dicono le sue primitive. F (x) è primitiva di f (x) se e solo se F’ (x) = f (x) Se l’intervallo [a , b] è tutto contenuto in D, il simbolo: b f (x) dx a rappresenta l’integrale definito di f (x) in [a , b] ossia la somma algebrica delle aree delle parti di piano comprese tra l’asse x, il grafico di f (x) e le rette verticali x = a e x = b; prendiamo con segno positivo le aree che si trovano al di sopra dell’asse x e con segno negativo quelle che si trovano al disotto. Il teorema fondamentale del calcolo integrale dice: b f (x) dx = F (b) – F (a) a dove F (x) è una qualsiasi primitiva di f (x). Per calcolare l’area sottesa del grafico della funzione f (x) in [a , b] (considerando cioè con segno positivo anche le aree delle parti del piano al disotto dell’asse x), è necessario individuare i punti in cui f (x) si annulla, calcolare l’integrale separatamente su ciascun pezzo di [a , b] in cui f (x) ha segno costante, e infine sommare i loro valori assoluti (ossia cambiando segno all’integrale quando f (x) è negativa). FORMULE Nel seguito a , b sono n° fissati, c è una costante che può assumere qualsiasi valore, f (x), g (x) sono funzioni e F (x), G (x) sono loro primitive, ossia F’ (x) = f (x), G’ (x) = g (x). RIEPILOGO DELLE PRINCIPALI FORMULE SUGLI INTEGRALI: 1. Integrazione di somme e di prodotti per costanti: (a f (x) + bg (x)) dx = a f (x) dx + b g (x) dx Continua »

vedi tutti gli appunti di matematica »
Carica un appunto Home Appunti